Experiments with fast radioactive beams at GSI Recent developments and results

FAIR -> NuSTAR -> R3B -> Dipole response

Quasi-free Scattering

Experiments with fast radioactive beams at GSI Recent developments and results

August 16th 2012

Nuclear Structure 2012

Argonne National Laboratory

FAIR -> NuSTAR -> R3B -> Dipole response

Quasifree Scattering

FAIR - Facility for Antiproton and Ion Research

Figure 1.1: Artists view of FAIR. The synchrotrons on the right will be located 10 to 13 m underground and will not be visible in reality. Most of the roofs will be vegetated and thus most of the facility will be hidden from view.

FAIR

02.07.2012 | Greatest Grant Notification of BMBF History for Particle Accelerator FAIR

Parliamentary State Secretary Helge Braun presented FAIR today with the greatest grant notification for a research project in the history of the Federal Ministry of Education and Research (BMBF) of 526 million Euro and thus gave green light for the construction of the facility.

High-energy radioactive beams at FAIR

High-energy radioactive beams at FAIR

Reactions with Relativistic Radioactive Beams

Quasi-free scattering in inverse kinematics with high-energy radioactive beams

Quasi-free knockout reactions (p,2p), (p,pn), (p,2p,n), (p,pd), (p,pα)

- Evolution of Shell structure
- Nucleon-Nucleon Correlations
 (short-range, tensor, ...)
- Cluster structure
- States beyond the neutron dripline

Otsuka et al.

Single-particle structure and correlations

Deviation from the independent-particle picture:

Correlations: Configuration mixing,

Coupling to collective phonons

Short-range and tensor correlations

- → high momenta
- → reduced single-particle strength (occupations, spectroscopic factors)

Single-particle cross sections Quenching for neutron-proton asymmetric nuclei

Correlations in asymmetric nuclei and nuclear matter

Probing Cold Dense Nuclear Matter

Subedi et al.13 JUNE 2008 VOL 320 SCIENCE

SPECTROSCOPIC FACTORS IN $^{16}{\rm O}$ AND NUCLEON ASYMMETRY

arXiv:0901.1920v1 [nucl-th] 14 Jan 2009

C. Barbieri

Theoretical Nuclear Physics Laboratory, RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan

W. H. Dickhoff

Department of Physics, Washington University, St. Louis, Missouri 63130, USA

Experimental setup: LAND/R3B@GSI

Quasi-free scattering with exotic nuclei: 17Ne(p,2p)15O+p The two-proton Halo (?) nucleus 17Ne

Pilot experiments with ¹²C, ¹⁷Ne and Ni isotopes already performed at the LAND-R3B setup are under analysis ...

Angular Correlations measured with Si-strip detectors for ¹⁷Ne(p,2p)¹⁵O+p

 $\Delta\theta$ ~180°, $\Delta\phi$ ~83° (sim. as for free pp scattering)

¹⁷Ne, Felix Wamers, PhD thesis

Benchmark experiment: ¹²C(p,2p) in inverse kinematics

Relative population of p-hole states ¹²C(p,2p)¹¹B

Figure 5.1: The relative populations of the three p-hole states in ¹¹B are compared with the relative spectroscopic factors obtained from (e,e'p), (p,2p) and (d,³He) experiments. A comparison with the theoretical Cohen-Kurath calculations [7] is shown as well. The sum of the relative values of all three states is unity in each case.

Valerii Panin, PhD thesis, TU Darmstadt (2012)

Momentum Distributions ¹²C(p,2p)¹¹B

Valerii Panin, PhD thesis, TU Darmstadt (2012)

Selective one-proton knockout from core- and 'Halo'- states in ¹⁷Ne

R3B preliminary data 2011, unpublished

The R³B Collaboration

Summary

- Low-lying dipole strength observed in n-rich nuclei, 'proton-Pygmy' in ³²Ar
- first attempt to extract n-skin thickness and density dependence of symmetry energy
- many open questions next-generation experimental program planned at GSI, RIKEN, SDALINAC, HIγS, Osaka, ...

systematics, strength and position as a function of N-Z (and mass) isospin character (isoscalar dipole) decay properties relation to nuclear-matter properties relation to observed low-lying strength for stable nuclei extraction of quadrupole strength

Quasi-free nucleon knockout in inverse kinematics

- QFS successfully applied in inverse kinematics
- Rich physics program: N-N correlations, shell structure, cluster structure, unbound nuclei

• R3B development towards FAIR

- Technical Design Report for neutron detector NeuLAND and calorimeter CALIFA ready
- R3B hall ready for installation in 2017, start of R3B @ FAIR with Super FRS in 2018